
define void @hvl_nvvm_0 (i64 %n, double* %output ,  double* %param.load.37 ,  double* %param.load.38 ,  
double* %param.load.41 ,  double* %param.load.52 ,  double* %param.load.54 ) {  

entry: 

                

for.body:              

                 

    %load.idx.37 = getelementptr inbounds double* %param.load.37, i64 %idxprom  

    %hvl.37 = load double* %load.idx.37, align 8  

    %load.idx.38 = getelementptr inbounds double* %param.load.38, i64 %idxprom  

    %hvl.38 = load double* %load.idx.38, align 8  

    %hvl.36 = fdiv double %hvl.37, %hvl.38  

    %hvl.35 = call double @__nv_log ( double %hvl.36 )  

    %load.idx.41 = getelementptr inbounds double* %param.load.41, i64 %idxprom  

    %hvl.41 = load double* %load.idx.41, align 8  

    %load.idx.52 = getelementptr inbounds double* %param.load.52, i64 %idxprom  

    %hvl.52 = load double* %load.idx.52, align 8  

    %hvl.43 = fmul double %hvl.52 , 5.0000000000000000e-001  

    %hvl.42 = fmul double %hvl.43, %hvl.52  

    %hvl.40 = fadd double %hvl.41, %hvl.42  

    %load.idx.54 = getelementptr inbounds double* %param.load.54, i64 %idxprom  

    %hvl.54 = load double* %load.idx.54, align 8  

    %hvl.39 = fmul double %hvl.40, %hvl.54  

    %hvl.34 = fadd double %hvl.35, %hvl.39  

    %hvl.53 = call double @__nv_sqrt ( double %hvl.54 )  

    %hvl.51 = fmul double %hvl.52, %hvl.53  

    %hvl.33 = fdiv double %hvl.34, %hvl.51  

    %hvl.4 = call double @mycnd (double %hvl.33)  

    %hvl.2 = fmul double %hvl.37, %hvl.4  

    %hvl.28 = fmul double %hvl.41 , -1.0000000000000000e+000  

    %hvl.27 = fmul double %hvl.28, %hvl.54  

    %hvl.26 = call double @__nv_exp ( double %hvl.27 )  

    %hvl.24 = fmul double %hvl.38, %hvl.26  

    %hvl.32 = fsub double %hvl.33, %hvl.51  

    %hvl.31 = call double @mycnd (double %hvl.32)  

    %hvl.23 = fmul double %hvl.24, %hvl.31  

    %hvl.1 = fsub double %hvl.2, %hvl.23  

  %output.idx = getelementptr inbounds double* %output, i64 %idxprom     

  store double %hvl.1, double* %output.idx, align 8         
             

  %idxprom.next = add i64 %idxprom, %stepprom          

                
      

  br label %for.tail             
    

                
      

for.tail:               
    

   ....               
       

function.end:              
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Existing source code usually interleaves data management, error-checking, text processing 

and actual compute. On general purpose processors, this mixture of code tasks is not nec-

essarily an issue, and performance levels are often satisfactory as is.  

However, when trying to use GPU, this hybrid computing turns into a coding challenge. 

Each individual computing tasks does not show sufficient workload, and porting the whole 

application requires a significant investment in the software asset.  

We propose an alternate approach with runtime compilation based on function calls on a 

compute library. Hybrid Vector Library operates on vectors, in a manner similar to BLAS lev-

el 1 routines, with other functions such as square root or exponential, or MKL routines. In 

essence, all operations are performed on a vector of values. We illustrate the performance 

results of this approach on a typical financial  benchmark. 

Existing solutions such as ArrayFire [5] do not allow custom device function to be called in 

the middle of a level 1 routines sequence. We address that issue by processing these func-

tions at compile time. 

MOTIVATION 

Similar to MKL or BLAS Level-1 routines,  Hybrid Vector Library exposes operations on vec-

tors of values. These operations include basic arithmetic operations, along with mathe-

matical function calls. It also exposes comparison tools and select operation to support 

basic value-dependent branching operations. 

The API has several implementations that can be chosen at runtime to allow maximal flexi-

bility. We illustrate here the use of two of these implementations. 

 [1] “Compiling Parallel Languages with the NVIDIA Compiler SDK”, Mark Harris, supercomputing 2012 

 [2] “LambdaJIT: a dynamic compiler for heterogeneous optimizations of STL algorithms.” Lutz, Thibaut, and Vinod 
Grover. Proceedings of the 3rd ACM SIGPLAN workshop on Functional high-performance computing. ACM, 2014 

 [3] “nvvm-IR  documentation“ : http://docs.nvidia.com/cuda/nvvm-ir-spec/index.html 

 [4] “Building GPU Compilers with libNVVM“ Yuan Lin http://on-demand.gputechconf.com/gtc/2013/presentations/
S3185-Building-GPU-Compilers-libNVVM.pdf 
 [5] “Array fire documentation” : http://arrayfire.org/docs/index.htm 
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DISCUSSION 
Whether due to kernel scheduling or systematic cache miss due to split kernel calls, execution of small tasks on a 

GPU lead to significant performance penalties. As a result, chosen approach is to perform a global porting of the ap-

plication to GPU which is a tedious effort on long-lasting software assets.  

We presented here an alternate solution that result in efficient execution of a queue of small GPU tasks, leveraging 

runtime compilation to avoid the cost of a kernel launch and cache miss on the device. With a good caching strategy, 

the overall performance is 98% 

of the performance obtained 

with a hand-tuned version of the 

same algorithm.  

The utilization of the arithmetic 

pipe is above 80% on a Kepler 

K40 GPU, entering the “compute

-bound” side of implementation 

class.  

The resulting device binary is then sched-

uled for execution and results can be queried. 

The DAG is encoded into a signature in order to 

cache the compilation results — CUDA binary 

module. As shown, the compilation time may 

be longer than the overall execution time. 

When calling API methods, the operations 

are not scheduled immediately on the device. 

The different calls are gathered in a graph, 

which is by construction directed and acyclic 

(DAG), and no operation is executed until re-

sults are queried.  

RUNTIME COMPILATION 
Depending on the implementation of HVL, execution of the calculation is performed at different stages. For the basic implementation, execution is 

done upon the API call on a vector of data. When using the NVVM –backed version, intermediate results do not exist. Operations are done in four 

phases: 

C++ Application Code (1) 

// scalar code 

double BlackScholesBodyScalar( 

    double Sf, //Stock price 

    double Xf, //Option strike 

    double Tf, //Option years 

    double Rf, //Riskless rate 

    double Vf  //Volatility rate 

) 

{ 

    double S = Sf, X = Xf, T = Tf, R = Rf, V = Vf; 

 

    double sqrtT = sqrt(T); 

    double    d1 = (log(S / X) + (R + 0.5 * V * V) * T) / (V * sqrtT); 

    double    d2 = d1 - V * sqrtT; 

    double CNDD1 = CND(d1); 

    double CNDD2 = CND(d2); 

 

    double expRT = exp(- R * T); 

    return (S * CNDD1 - X * expRT * CNDD2); 

} 

 

// vector code 

// earlier : mycnd has been declared extern “C“ for symbol to be retrieved 

hvlvect BlackScholesBodyVect(const hvlvect& S,  const hvlvect& X, const hvlvect& T,  

  const hvlvect& R, const hvlvect& V) 

{ 

 hvlvect VsqrtT = V * sqrt(T); 

 hvlvect    d1 = (log(S / X) + (R + 0.5 * V * V) * T) / (VsqrtT); 

 hvlvect    d2 = d1 - VsqrtT; 

 hvl_invoke(d1, mycnd);    

 hvl_invoke(d2, mycnd);   (2) 

 hvlvect expRT = exp(-R * T); 

 return (S * d1 - X * expRT * d2); 

} 

HVL API Calls  

hvl_create 

... 

hvl_assign_hybridvector 

hvl_apply_sqrt 

hvl_assign_hybridvector 

hvl_mul 

hvl_assign_hybridvector 

hvl_mul 

hvl_mul_scalar 

hvl_add 

hvl_mul 

hvl_assign_hybridvector 

hvl_div 

hvl_apply_log 

hvl_add 

hvl_div 

hvl_assign_hybridvector 

hvl_sub 

HVL_invoke 

HVL_invoke 

hvl_assign_hybridvector 

hvl_mul 

hvl_mul_scalar 

hvl_apply_exp 

hvl_assign_hybridvector 

hvl_mul 

hvl_assign_hybridvector 

hvl_mul 

hvl_mul 

hvl_sub 

hvl_destroy 

... 

At given milestones, the DAG is converted 

into NVVM source code: each node is an 

NVVM statement with a single output. The 

NVVM source code is compiled at runtime. The 

sequence of calls and the compilation result are 

cached for future usage.  

PERFORMANCE OF NAIVE IMPLEMENTATION 

The naïve implementation will perform a kernel call for each vector operation. Beyond the 

lack of compiler optimization that would for example reconstruct FMA operations, this im-

plementation suffers an important performance penalty. Indeed, each kernel call needs to 

be scheduled and executed. As illustrated in the following profiling snapshots, the execu-

tion time of a launch is about 25 microseconds 

(10µs configuration and 15µs launch). Within 

this time, about 1 million vector entries can be 

processed (calculating exp or log of the values 

for instance) 

Moreover, kernel executions are memory 

bound. Indeed, current GPUs can execute more 

than 50 FLOPS for each memory operation, 

making all simple math functions, including 

transcendentals such as exponential, memory bound. We can see performance is driven by 

memory operations and not arithmetic complexity. 

hvl_cuda_compare_scalar<le>; 741

hvl_cuda_unary<log>; 1196

hvl_cuda_unary<rcp>; 1256

hvl_cuda_binary_scalar<mul>; 1263

hvl_cuda_unary<exp>; 1267

hvl_cuda_unary<fabs>; 1267

hvl_cuda_binary_scalar<add>; 1270

hvl_cuda_unary<sqrt>; 1271

hvl_select; 1699

hvl_cuda_binary<sub>; 1782

hvl_cuda_binary<mul>; 1784

hvl_cuda_binary<add>; 1787

hvl_cuda_binary<div>; 1812

hvl_cuda_moments; 3248
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PERFORMANCE OF RUNTIME COMPILATION OF DAG 

As we can see in this table, the runtime compilation re-

quires significantly more CPU time than the execution for 

sizes in the 100k range. 

Compilation of NVVM code takes about 50 milliseconds 

which is much higher than most execution times. A good 

caching strategy is needed.  

As a future work, we consider performing register alloca-

tion and PTX generation directly for DAG instances where 

initial cost cannot be amortized by caching strategy. 

Task Execution Time  

(micro seconds) 

Converting DAG to NVVM 97.34 

NVVM compilation to PTX 49,912.08 

PTX compilation to CUBIN 1,674.64 

CUBIN load 517.53 

Execution of same algorithm with same launch settings (120 blocks—256 threads on a Tesla K40c with CUDA 8.0 

on a variety of options count) 

User-defined device functions are identi-

fied in the call graph. CUDA source is gener-

ated for each of them, as long as a cubin file. 

The pairs function/cubin is registered at appli-

cation startup. 

1 2 3 4 

define void @hvl_nvvm_0 (i64 %n, double* %output ,  double* %param.load.37 ,  double* %param.load.38 ,  
double* %param.load.41 ,  double* %param.load.52 ,  double* %param.load.54 ) {  

entry: 

                

for.body:              

                 

    %load.idx.37 = getelementptr inbounds double* %param.load.37, i64 %idxprom  

    %hvl.37 = load double* %load.idx.37, align 8  

    %load.idx.38 = getelementptr inbounds double* %param.load.38, i64 %idxprom  

    %hvl.38 = load double* %load.idx.38, align 8  

    %hvl.36 = fdiv double %hvl.37, %hvl.38  

    %hvl.35 = call double @__nv_log ( double %hvl.36 )  

    %load.idx.41 = getelementptr inbounds double* %param.load.41, i64 %idxprom  

    %hvl.41 = load double* %load.idx.41, align 8  

    %load.idx.52 = getelementptr inbounds double* %param.load.52, i64 %idxprom  

    %hvl.52 = load double* %load.idx.52, align 8  

    %hvl.43 = fmul double %hvl.52 , 5.0000000000000000e-001  

    %hvl.42 = fmul double %hvl.43, %hvl.52  

    %hvl.40 = fadd double %hvl.41, %hvl.42  

    %load.idx.54 = getelementptr inbounds double* %param.load.54, i64 %idxprom  

    %hvl.54 = load double* %load.idx.54, align 8  

    %hvl.39 = fmul double %hvl.40, %hvl.54  

    %hvl.34 = fadd double %hvl.35, %hvl.39  

    %hvl.53 = call double @__nv_sqrt ( double %hvl.54 )  

    %hvl.51 = fmul double %hvl.52, %hvl.53  

    %hvl.33 = fdiv double %hvl.34, %hvl.51  

    %hvl.4 = call double @mycnd (double %hvl.33)  

    %hvl.2 = fmul double %hvl.37, %hvl.4  

    %hvl.28 = fmul double %hvl.41 , -1.0000000000000000e+000  

    %hvl.27 = fmul double %hvl.28, %hvl.54  

    %hvl.26 = call double @__nv_exp ( double %hvl.27 )  

    %hvl.24 = fmul double %hvl.38, %hvl.26  

    %hvl.32 = fsub double %hvl.33, %hvl.51  

    %hvl.31 = call double @mycnd (double %hvl.32)  

    %hvl.23 = fmul double %hvl.24, %hvl.31  

    %hvl.1 = fsub double %hvl.2, %hvl.23  

  %output.idx = getelementptr inbounds double* %output, i64 %idxprom     

  store double %hvl.1, double* %output.idx, align 8         
             

  %idxprom.next = add i64 %idxprom, %stepprom          

                
      

  br label %for.tail             
    

                
      

for.tail:               
    

   ....               
       

function.end:              
    

Indices management 

Indices management 

//--------------------- .nv.info.mycnd            -------------------------- 

 .section .nv.info.mycnd,"",@"SHT_CUDA_INFO" 

 .align 4 

hvl_nvvm_0: 

.text.hvl_nvvm_0: 

        /* entry block */ 

.L_23: 

        /* some compute blocks */ 

.L_16: 

 

.L_21: 

        /*0788*/                   MOV R4, R24; 

        /*0790*/                   MOV R5, R25; 

        /*0798*/                   JCAL `(mycnd); 

        /*07a8*/         {         DMUL R6, R30, -R16; 

        /*07b0*/                   SSY `(.L_22);        } 

        /*07b8*/                   DMUL R8, R6, c[0x2][0x70]; 

        /*07c8*/                   DADD R8, R8, 6.75539944105574400000e+015; 

        /*07d0*/                   DADD R12, R8, -6.75539944105574400000e+015; 

        /*07d8*/                   DFMA R10, R12, c[0x2][0x78], R6; 

        /*07e8*/                   DFMA R10, R12, c[0x2][0x80], R10; 

        /*07f0*/                   MOV32I R12, 0xfca213ea; 

        /*07f8*/                   MOV32I R13, 0x3e928af3; 

        /*0808*/                   DFMA R12, R10, c[0x2][0x88], R12; 

        /*0810*/                   DFMA R12, R10, R12, c[0x2][0x90]; 

        /*0818*/                   DFMA R12, R10, R12, c[0x2][0x98]; 

        /*0828*/                   DFMA R12, R10, R12, c[0x2][0xa0]; 

        /*0830*/                   DFMA R12, R10, R12, c[0x2][0xa8]; 

        /*0838*/                   DFMA R12, R10, R12, c[0x2][0xb0]; 

        /*0848*/                   DFMA R12, R10, R12, c[0x2][0xb8]; 

        /*0850*/                   DFMA R12, R10, R12, c[0x2][0xc0]; 

        /*0858*/                   DFMA R12, R10.reuse, R12, c[0x2][0xc8]; 

        /*0868*/                   FSETP.LT.AND P0, PT, |R7|, c[0x2][0xd0], PT; 

        /*0870*/                   DFMA R12, R10, R12, c[0x2][0x0]; 

        /*0878*/                   DMUL R22, R22, R4; 

        /*0888*/                   DFMA R10, R10, R12, c[0x2][0x0]; 

        /*0890*/                   ISCADD R17, R8, R11, 0x14; 

        /*0898*/         {         MOV R16, R10; 

        /*08a8*/               @P0 SYNC                                                    (*"TARGET= .L_22 "*);        } 

        /*08b0*/         {         MOV R0, R7; 

        /*08b8*/                   DSETP.LT.AND P0, PT, R6, RZ, PT;        } 

        /*08c8*/                   DADD R4, R6, +INF ; 

        /*08d0*/                   FSETP.GEU.AND P1, PT, |R0|, c[0x2][0xd4], PT; 

        /*08d8*/                   SEL R16, RZ, R4, P0; 

        /*08e8*/                   SEL R17, RZ, R5, P0; 

        /*08f0*/         {         MOV R4, R10; 

        /*08f8*/               @P1 SYNC                                                    (*"TARGET= .L_22 "*);        } 

        /*0908*/                   LEA.HI R0, R8.reuse, R8, RZ, 0x1; 

        /*0910*/                   SHR R5, R0, 0x1; 

        /*0918*/                   IADD R0, R8, -R5; 

        /*0928*/                   ISCADD R5, R5, R11, 0x14; 

        /*0930*/                   MOV R6, RZ; 

        /*0938*/                   ISCADD32I R7, R0, 0x3ff00000, 0x14; 

        /*0948*/                   DMUL R16, R4, R6; 

        /*0950*/                   SYNC                                                    (*"TARGET= .L_22 "*); 

.L_22: 

        /* exit block */ 

.L_71: 

NVVM Generated Code SASS Generated Code 

(1) In this implementation all calls are within the same function but it can be spread 

on multiple source files or binary modules. 
From HVL API Calls, a DAG is generated and upon re-

quest transformed into  NVVM source code.  

Vector operators are  

overloaded in C++ to 

make use of hvl library 

and include error-

checking using excep-

tions. User defined de-

vice code is invoked 

through special API 

calls. 

A cubin file is generat-

ed at runtime and 

linked with precom-

piled modules of cus-

tom device functions. 

When executing operations upon library API call, performance is memory-bound and kernel 

execution time solely depends on amount of memory read or written.  

BENEFITS OF USER-DEFINED FUNCTIONS 
In the case of complex algorithm, for example when branching cannot be converted into functions like maximum, 

the set of methods exposed in the library are not necessarily sufficient for a single source implementation. It is 

sometimes necessary to either implement kernels by hand (in which case one per architecture), or retrieve data on 

the CPU losing significant performance benefit from the approach. 

Enabling user-defined functions, it is possible for the user to write a function in a single version, and with a cus-

tomized compilation tool-chain that function can be invoked by all underlying implementations (host or device). 

Such functions are declared using supplemental attributes for the toolchain to connect between implementations. 

http://dl.acm.org/citation.cfm?id=2636233
http://docs.nvidia.com/cuda/nvvm-ir-spec/index.html
http://on-demand.gputechconf.com/gtc/2013/presentations/S3185-Building-GPU-Compilers-libNVVM.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3185-Building-GPU-Compilers-libNVVM.pdf
http://arrayfire.org/docs/index.htm

