How Pascal And Power 8 Will Accelerate
Counterparty Risk Calculations

GTC Europe 2016
28-29 September
Amsterdam

© Altimesh 2016 — all rights reserved

Summary

 Counterparty Risk
— Massively Parallel problem
— From Big Data to Massive Compute
e Quantitative Libraries
— Performance vs Code Flexibility?
e The DAG
— Pricing algorithm as a Directed Acyclic Graph
« DAG Shapes and Sizes
— New degrees of freedom with DAG chunks
— NVLink and the DAG

e Expectations on Pascal

© Altimesh 2016 — all rights reserved

L
sk

e

Counterparty R

;
e Exposure Cube) I ‘f<j7f
— Calculating all points ’,-:’,::ff;f;:f J f/;'ff o
— Aggregation along deals ,{}ﬁﬂ{??ﬂ{?;:{};igi’f 12
(simulations x time S s {455 S S ////
points) jﬁ?f{?fﬁ-'—"“'“ﬂ
— Sorting and aggregation (3 g gy
along time points for x;{f;’
risk measures 158
Exposure ‘

* Problem Dimension @ﬁ

— 1,000,000 x 5,000 x 400 time points
2 trillion calculations (16TB of doubles)

— This is one run... We need a few hundreds

T 6] Atimesh

© Altimesh 2016 — all rights reserved

Counterparty Risk Calculations

e Risk Calculation

— Large Problem: hundreds of servers, hundreds of TB, dozen
of Databases..

— Problems: Cost, Scalability, Maintenance..
* GTC 2013
— Presentation of results and performance at GTC 2013
— Live mid-2014
* Quantitative Library
— Source code written in C# (popular amongst quant analysts)
— Hybridized in CUDA/C and C++/0MP
— Compiled to native target (GPU/CPU)

— Used in a distributed Java application: Symphony,
Coherence, Cassandra, Splunk

© Altimesh 2016 — all rights reserved

Quantitative Libraries

e Quantitative Library Yield Curves
for IRFX (live 2014) EUR USD (~50MB each)
— Complexity is
low/Medium Copy Data to GPU

— Code generated is
CUDA/C and C
structures Product Components

— It is all about Description (single type)
pricing (simulations

are generated once Pricin.g
beforehand) Algorithm Instrument
. e (single GPU Pricer Code
— Pricing fits in single kernel call) (CUDA)

GPU kernel method

} Pricing Result ~5MB

© Altimesh 2016 — all rights reserved

Quantitative Libraries

Quantitative Library for
Equity/Commodity (2015)

Complexity is medium
Need an object oriented
model

Number of MC paths: x2.5
IRFX

Quantitative Library for
Credit and Repo (2016)

Complexity is high
Simulation and Pricing
need to be interlaced

Number of MC paths: x2
EQCM, x5 IRFX

hunk .Chunk

Load

Random oo

}
|
]. Vel e
}

- Store % : P

Price

© Altimesh 2016 — all rights reserved

Computation with Directed Acyclic Graph

Market
Data

Deal Deal Deal Deal Deal
Pricing | Pricing | Pricing | Pricing Pricing

Collateral Collateral
Contract Contract

< e Counterparty

© Altimesh 2016 — all rights reserved

Computation with Directed Acyclic Graph

Market
Data

K80

PCI Express — 5-10 GB/s

Deal Deal Deal Deal Deal
Pricing | Pricing | Pricing | Pricing Pricing

Collateral Collateral

Contract Contract

Counterparty

© Altimesh 2016 — all rights reserved

Computation with Directed Acyclic Graph

CPU Memory

Footprint

Up to 20 GB / stress
scenario

[Optional]
15-30 MB / deal

15-30 MB / contract

15-30 MB

DAG is built for a chunk of
simulations N = k*32

Load Market Data
From CPU RAM
Price Price Price

Deal A Deal B Deal C

Collateral Collateral
Contract Contract
Counterparty

GPU Memory

Footprint — working
set

45 kB / DF / sim

3 kB / deal / sim

3 kB / contract /sim

3 kB /sim

The larger the chunk of sims, the more parallelism

© Altimesh 2016 — all rights reserved

Computation with Directed Acyclic Graph

e Performance bottleneck

— CPU to GPU Bandwidth Load Market Data
From CPU RAM

— Variable between (GPU)
* Memory-bandwidth bound Price
* Memory-latency bound Deals
* Compute bound

. Collateral
— GPU Memory bandwidth Aol
— GPU Memory bandwidth

© Altimesh 2016 — all rights reserved

Computation with Directed Acyclic Graph

e Build a DAG of calculation nodes

* Working-set depends on GPU memory budget
— Larger simulation chunks mean more parallelism
— More deals mean more market data reuse

e NV-Link makes usage of system memory as intermediate
buffer viable - new options

— Market data resides on CPU and is not cached on GPU memory
— Output buffers never allocated on GPU
— Some intermediate buffers never allocated on GPU

© Altimesh 2016 — all rights reserved

NVLink Offers New Work Load-Balancing

DDR4 DDR4

‘ 76.8 GB/s t 115 GB/s

16 GB/s X 16 GB/s
80 GB/s 1 ‘80 GB/s

P100 P100
80 GB/S

More flexibility for work distribution: large chunks and DAG split amongst several devices A
T ’f’

12 /.

© Altimesh 2016 — all rights reserved

CPU Memory

Footprint

Up to 20 GB
[Optional]
15-30 MB / deal

15-30 MB / contract

15-30 MB

Using Page Migration

DAG is built for a chunk of
simulations N = k*32

Load Market Data
From CPU RAM
Price Price Price

Deal A Deal B Deal C

Collateral Collateral
Contract Contract
Counterparty

© Altimesh 2016 — all rights reserved

GPU Memory

Footprint — working
set

Sl e
pages migrated on
demand

3 kB / deal / sim
Performance cursor

3 kB / contract /sim

3 kB /sim

DAG Size Balance

LARGE DAG (many deals)

* Benefits

— Significant reuse of
market data

— Block-level parallelism

e Drawbacks

— Smaller chunks mean
lower parallelism

— Yields performance
penalty on large SMX
from Kepler

SMALL DAG (large simulation
chunks)

e Benefits
— Better parallelism

— Lower memory-latency
boundness (many blocks
may work on same code)

e Drawbacks

— Little reuse of market
data

— High performance penalty
on Kepler as market data
transfer is slowest

© Altimesh 2016 — all rights reserved

DAG Size Balance

KEPLER

Market Data Reuse

DAG Size

© Altimesh 2016 — all rights reserved

DAG Size Balance - Small Counterparties

CPTY/DAG

Market Data Reuse

1 :
CPTY/DAG Chunk size >

DAG Size

© Altimesh 2016 — all rights reserved

DAG Size Balance - Large Counterparties

, 12 GB

Market Data Reuse

Several
DAG/CPTY

——] __ i

< Chunk size

DAG Size

© Altimesh 2016 — all rights reserved

DAG Size Balance - Very Complex Products

, 12 GB

Market Data Reuse

reduce chunk size

DAG Size

© Altimesh 2016 — all rights reserved

Benefits of Pascal

K80 (1/2) e Small counterparties

— Group counterparties (more
FLOPS 1.45TF 53TF data reuse)

GPU<->GPU 240 GB/s 720 GB/s — Easier to reach
local/extern peak

Memory Size 12 GB 16 GB
Interconnect 8x Gen 3 NVLink * Large counterparties
— Coarser split (more data
GPU<->CPU 16 GB/s 80 GB/s reuse)
Local/extern 15 9 — Larger chunks (more
parallelism)
Watts 150 300
FLOPS/Watts 9.66 17.6 * Very Complex Products
— Larger chunks (more
GB/s/Watts 1.6 2.4 parallelism)
Ext./Watts 0.107 0.267 — Coarser split (more data
reuse) |

© Altimesh 2016 — all rights reserved S) Aimesh

Example Configurations

Pascal

config)

2 x Intel +
4 x K80
Watt (TDP) 1600
GPU Compute 7.25
GLOPS/W
GPU Memory 1.20
GB/s/W
CPU-GPU Link 0.080
(GB/s/W)

RATIO (vs | 2 x Power + 4 x
Pascal Pascal
config)
1900
1.45 10.53
1.26 1.52
2.11 0.168

RATIO (vs | 2 x Intel +
2 x K80
1150
2.09 5.04
1.83 0.83
3.0 0.056

Early tests on an engineering MinsRy sample with pre-release driver
version illustrate an aggregate NV-Link read bandwidth of 126 GB/s, that
1s 75% of theoretical peak. In comparison, the best bandwidth obtained
on two K80 is 22 GB/s which is 69% of theoretical peak.

System TDP: bi-socket Intel: 400W, bi-socket Power: 700W, K80 board: 300W, Pascal mezzanine: 300W)(j

© Altimesh 2016 — all rights reserved

System and GPU Architecture Evolutions

* Quantitative Library Evolution
— Started as a C-style Library..
— ..now an Oriented Object Library
— On the fly simulation, with chunks, offer perfect scalability

e Nvidia Evolution
— Cuda: CPU Memory in GPU Address space

— Hardware: More Cores, More memory, More performance/Watt,
Easier access to performance

— Evolution Handbrakes: Support different architectures in our
data center (Fermi, Kepler and soon Pascal)

e Pascal

— High NVLink bandwidth changes the deal of host memory
accessed by device

© Altimesh 2016 — all rights reserved T) Akimesh

Thanks for your attention

http://www.altimesh.com

© Altimesh 2016 — all rights reserved

