
© Altimesh 2016 – all rights reserved

How Pascal And Power 8 Will Accelerate 
Counterparty Risk Calculations

GTC Europe 2016

28-29 September

Amsterdam 



© Altimesh 2016 – all rights reserved

Summary

• Counterparty Risk

– Massively Parallel problem

– From Big Data to Massive Compute

• Quantitative Libraries

– Performance vs Code Flexibility?

• The DAG

– Pricing algorithm as a Directed Acyclic Graph

• DAG Shapes and Sizes

– New degrees of freedom with DAG chunks

– NVLink and the DAG

• Expectations on Pascal

2



© Altimesh 2016 – all rights reserved

Counterparty Risk

• Exposure Cube

– Calculating all points

– Aggregation along deals 
(simulations x time 
points)

– Sorting and aggregation 
along time points for 
risk measures
Exposure

3

• Problem Dimension

– 1,000,000 x 5,000 x 400 time points
2 trillion calculations (16TB of doubles)

– This is one run…. We need a few hundreds



© Altimesh 2016 – all rights reserved

Counterparty Risk Calculations

• Risk Calculation

– Large Problem: hundreds of servers, hundreds of TB, dozen 
of Databases…

– Problems: Cost, Scalability, Maintenance…

• GTC 2013

– Presentation of results and performance at GTC 2013

– Live mid-2014

• Quantitative Library

– Source code written in C# (popular amongst quant analysts)

– Hybridized in CUDA/C and C++/OMP

– Compiled to native target (GPU/CPU)

– Used in a distributed Java application: Symphony, 
Coherence, Cassandra, Splunk

4



© Altimesh 2016 – all rights reserved

Quantitative Libraries

• Quantitative Library 
for IRFX (live 2014)

– Complexity is 
low/Medium

– Code generated is 
CUDA/C and C 
structures

– It is all about 
pricing (simulations 
are generated once 
beforehand)

– Pricing fits in single 
GPU kernel method

5

EUR USD

Yield Curves
(~50MB each)

Copy Data to GPU

Product Components
Description (single type)

Instruments

Pricing Result

Pricing 
Algorithm 
(single GPU 
kernel call)

Instrument 
Pricer Code 

(CUDA)

~5MB



© Altimesh 2016 – all rights reserved

EUR EUR EUREUR EUR EUR

N N NN N N

Quantitative Libraries

• Quantitative Library for 
Equity/Commodity (2015)

– Complexity is medium

– Need an object oriented 
model

– Number of MC paths: x2.5 
IRFX

• Quantitative Library for 
Credit and Repo (2016)

– Complexity is high

– Simulation and Pricing 
need to be interlaced

– Number of MC paths: x2 
EQCM, x5 IRFX

6

Load EUR EUR EUR

Random N N N

Model ∏ ∏ ∏

Underlying Ω Ω Ω

∑ ∑ ∑Price

chunk chunk chunk

Store



© Altimesh 2016 – all rights reserved

Computation with Directed Acyclic Graph

7

Market 
Data

Collateral 
Contract

Counterparty

Deal 
Pricing

Deal 
Pricing

Deal 
Pricing

Deal 
Pricing

Deal 
Pricing

Collateral 
Contract

By Deal 
Data

By Coll. 
Data

CPTY 
Data

1

2

3

4



© Altimesh 2016 – all rights reserved

Computation with Directed Acyclic Graph

8

Market 
Data

Collateral 
Contract

Counterparty

Deal 
Pricing

Deal 
Pricing

Deal 
Pricing

Deal 
Pricing

Deal 
Pricing

Collateral 
Contract

By Deal 
Data

By Coll. 
Data

CPTY 
Data

P
C

I E
xp

re
ss

 –
5

-1
0

 G
B

/s

K80



© Altimesh 2016 – all rights reserved

Computation with Directed Acyclic Graph

9

Load Market Data 
From CPU RAM

Price 
Deal A

Price 
Deal B

Price 
Deal C

CPU Memory
Footprint

Up to 20 GB / stress
scenario

[Optional]
15-30 MB / deal

15-30 MB / contract

15-30 MB

GPU Memory
Footprint – working 
set

45 kB / DF / sim

3 kB / deal / sim

3 kB / contract /sim

3 kB / sim

Collateral 
Contract

Collateral 
Contract

Counterparty

The larger the chunk of sims, the more parallelism

DAG is built for a chunk of 
simulations N = k*32 



© Altimesh 2016 – all rights reserved

Computation with Directed Acyclic Graph

• Performance bottleneck

– CPU to GPU Bandwidth

– Variable between (GPU) 

• Memory-bandwidth bound

• Memory-latency bound

• Compute bound

– GPU Memory bandwidth

– GPU Memory bandwidth 

10

Load Market Data 
From CPU RAM

Price 
Deals

Collateral 
Contract

Counterparty



© Altimesh 2016 – all rights reserved

Computation with Directed Acyclic Graph

• Build a DAG of calculation nodes

• Working-set depends on GPU memory budget

– Larger simulation chunks mean more parallelism

– More deals mean more market data reuse

• NV-Link makes usage of system memory as intermediate 
buffer viable – new options

– Market data resides on CPU and is not cached on GPU memory

– Output buffers never allocated on GPU

– Some intermediate buffers never allocated on GPU

11



© Altimesh 2016 – all rights reserved

NVLink Offers New Work Load-Balancing

12

x86
P8

K80

P100 P100

16 GB/s16 GB/s

16 GB/s

80 GB/s

80 GB/s

80 GB/s

DDR4 DDR4

76.8 GB/s 115 GB/s

More flexibility for work distribution: large chunks and DAG split amongst several devices



© Altimesh 2016 – all rights reserved

Using Page Migration

13

Load Market Data 
From CPU RAM

Price 
Deal A

Price 
Deal B

Price 
Deal C

CPU Memory
Footprint

Up to 20 GB

[Optional]
15-30 MB / deal

15-30 MB / contract

15-30 MB

GPU Memory
Footprint – working 
set

45 kB / DF / sim
pages migrated on 
demand

3 kB / deal / sim
Performance cursor

3 kB / contract /sim

3 kB / sim

Collateral 
Contract

Collateral 
Contract

Counterparty

DAG is built for a chunk of 
simulations N = k*32 



© Altimesh 2016 – all rights reserved

DAG Size Balance

LARGE DAG (many deals)

• Benefits

– Significant reuse of 
market data

– Block-level parallelism

• Drawbacks

– Smaller chunks mean 
lower parallelism

– Yields performance 
penalty on large SMX 
from Kepler

SMALL DAG (large simulation 
chunks)

• Benefits

– Better parallelism

– Lower memory-latency 
boundness (many blocks 
may work on same code)

• Drawbacks

– Little reuse of market 
data

– High performance penalty 
on Kepler as market data 
transfer is slowest

14



© Altimesh 2016 – all rights reserved

DAG Size Balance

15

M
ar

ke
t 

D
at

a 
R

eu
se

DAG Size

KEPLER

PASCAL



© Altimesh 2016 – all rights reserved

DAG Size Balance – Small Counterparties

16

M
ar

ke
t 

D
at

a 
R

eu
se

DAG Size

1 
CPTY/DAG

Many 
CPTY/DAG

Chunk size >

Chunk size >



© Altimesh 2016 – all rights reserved

DAG Size Balance – Large Counterparties

17

M
ar

ke
t 

D
at

a 
R

eu
se

DAG Size

Several 
DAG/CPTY

1 
DAG/CPTY

< Chunk size

< Chunk size



© Altimesh 2016 – all rights reserved

DAG Size Balance – Very Complex Products

18

M
ar

ke
t 

D
at

a 
R

eu
se

DAG Size

1 DEALreduce chunk size

few 
DEALS

many 
DEALS



© Altimesh 2016 – all rights reserved

Benefits of Pascal

• Small counterparties
– Group counterparties (more 

data reuse)

– Easier to reach 
local/extern peak

• Large counterparties
– Coarser split (more data 

reuse)

– Larger chunks (more 
parallelism)

• Very Complex Products
– Larger chunks (more 

parallelism)

– Coarser split (more data 
reuse)

19

Harwdare K80 (1/2) Pascal (Minksy)

FLOPS 1.45 TF 5.3 TF

GPU<->GPU 240 GB/s 720 GB/s

Memory Size 12 GB 16 GB

Interconnect 8x Gen 3 NVLink

GPU<->CPU 16 GB/s 80 GB/s

Local/extern 15 9

Watts 150 300

FLOPS/Watts 9.66 17.6

GB/s/Watts 1.6 2.4

Ext./Watts 0.107 0.267



© Altimesh 2016 – all rights reserved

Example Configurations

Early tests on an engineering Minsky sample with pre-release driver 
version illustrate an aggregate NV-Link read bandwidth of 120 GB/s, that 
is 75% of theoretical peak. In comparison, the best bandwidth obtained 
on two K80 is 22 GB/s which is 69% of theoretical peak.

20

Metric 2 x Intel +
4 x K80

RATIO (vs 
Pascal 
config)

2 x Power + 4 x 
Pascal

RATIO (vs 
Pascal
config)

2 x Intel +
2 x K80

Watt (TDP) 1600 1900 1150

GPU Compute
GLOPS/W

7.25 1.45 10.53 2.09 5.04

GPU Memory
GB/s/W

1.20 1.26 1.52 1.83 0.83

CPU-GPU Link 
(GB/s/W)

0.080 2.11 0.168 3.0 0.056

System TDP: bi-socket Intel: 400W, bi-socket Power: 700W, K80 board: 300W, Pascal mezzanine: 300W



© Altimesh 2016 – all rights reserved

System and GPU Architecture Evolutions

• Quantitative Library Evolution
– Started as a C-style Library…

– …now an Oriented Object Library

– On the fly simulation, with chunks, offer perfect scalability

• Nvidia Evolution
– Cuda: CPU Memory in GPU Address space 

– Hardware: More Cores, More memory, More performance/Watt, 
Easier access to performance

– Evolution Handbrakes: Support different architectures in our 
data center (Fermi, Kepler and soon Pascal) 

• Pascal
– High NVLink bandwidth changes the deal of host memory 

accessed by device

21



© Altimesh 2016 – all rights reserved

Thanks for your attention

http://www.altimesh.com

22


