
© Altimesh 2018 – all rights reserved

Image Processing Optimization
C# on GPU with Hybridizer™

regis.portalez@altimesh.com

mailto:regis.portalez@altimesh.com

© Altimesh 2018 – all rights reserved

Median Filter
Denoising

2

Noisy image
(lena 1960x1960)

Denoised image
window = 3

© Altimesh 2018 – all rights reserved

Median Filter
Denoising

3

window

Output[i,j]= 𝑀𝑒𝑑𝑖𝑎𝑛
{

𝑖𝑛𝑝𝑢𝑡 𝑝, 𝑞 ,
𝑝 ∈ 𝑖 − 𝑤𝑖𝑛𝑑𝑜𝑤, 𝑖 + 𝑤𝑖𝑛𝑑𝑜𝑤 ,
q ∈ 𝑗 − 𝑤𝑖𝑛𝑑𝑜𝑤, 𝑗 + 𝑤𝑖𝑛𝑑𝑜𝑤

}

For each pixel, we read (2 * window + 1)² pixels of input

© Altimesh 2018 – all rights reserved

Optimization Steps
An Overview

1. Enable C# parallelization (remove loop side effects)

2. Use Parallel.For

3. Run on GPU (Hybridizer)

– 3.1 Decorate methods

– 3.2 Allocate memory

– 3.3 Feed our 50k threads

4. Implement Advanced Optimizations

– 4.1 Shared memory

– 4.2 Texture memory

5. More Optimizations

4

Necessary

Low cost

Bonus

Expertise

x5

x78

x92

x?

Median Filter is not easy.
On easier code, steps 3 and 4 would be sufficient

© Altimesh 2018 – all rights reserved

AForge code

5

ushort* src, dst;
for (int y = startY; y < stopY; y++)
{

for (int x = startX; x < stopX; x++, src++, dst++)
{

int c = 0;
for (i = -radius; i <= radius; i++)
{

for (j = -radius; j <= radius; j++)
{

g[c++] = src[i * srcStride + j];
}

}

Array.Sort(g, 0, c);
*dst = g[c >> 1];

}
src += srcOffset;
dst += dstOffset;

}

© Altimesh 2018 – all rights reserved

AForge code

6

ushort* src, dst;
for (int y = startY; y < stopY; y++)
{

for (int x = startX; x < stopX; x++, src++, dst++)
{

int c = 0;
for (i = -radius; i <= radius; i++)
{

for (j = -radius; j <= radius; j++)
{

g[c++] = src[i * srcStride + j];
}

}

Array.Sort(g, 0, c);
*dst = g[c >> 1];

}
src += srcOffset;
dst += dstOffset;

}

Old-school optimizations
Inner loops have side-
effects
Requires unsafe

© Altimesh 2018 – all rights reserved

1. Enable Parallelization
Remove loop side-effects

7

var buffer1 = new ushort[windowCount * windowCount];
for (int j = window; j < height - window; ++j)
{

for (int i = window; i < width - window; ++i)
{

for (int k = -window; k <= window; ++k)
{

for (int p = -window; p <= window; ++p)
{

int bufferIndex = (k + window) * windowCount + p + window;
int pixelIndex = (j + k) * width + (i + p);
buffer1[bufferIndex] = input[pixelIndex];

}
}

Array.Sort(buffer1, 0, windowCount * windowCount);
output[j * width + i] = buffer1[(windowCount * windowCount) / 2];

}
}

© Altimesh 2018 – all rights reserved

8

No performance penalty – Jitter is quite smart now!
Much more readable code
Inner loops are independant of the outer loops: possible to
introduce parallelization

0

0,2

0,4

0,6

0,8

1

1,2

Aforge Naive

Relative Performance

© Altimesh 2018 – all rights reserved

2. Use Parallel.For

9

Parallel.For(window, height - window, j =>
{

var buffer1 = new ushort[windowCount * windowCount];
for (int i = window; i < width - window; ++i)
{

for (int k = -window; k <= window; ++k)
{

for (int p = -window; p <= window; ++p)
{

int bufferIndex = (k + window) * windowCount + p + window;
int pixelIndex = (j + k) * width + (i + p);
buffer1[bufferIndex] = input[pixelIndex];

}
}

Array.Sort(buffer1, 0, windowCount * windowCount);
output[j * width + i] = buffer1[(windowCount * windowCount) / 2];

}
});

© Altimesh 2018 – all rights reserved

10

One line change yields a x5,5 speed-up

0

1

2

3

4

5

6

Aforge Naive Parallel

Relative Performance

© Altimesh 2018 – all rights reserved

3. Run On GPU
CUDA & GPU: A Few Words

11

…

Multi-
processor

CUDA cores

- Multiprocessors (SM) are
similar to CPU Cores
- CUDA cores are similar to CPU
SIMD lanes

© Altimesh 2018 – all rights reserved

3. Run On GPU
CUDA threading model

12

▪ Threads are grouped in
blocks

▪ Blocks are grouped in a
grid

▪ Grids and blocks have
configurable shape (1, 2 or
3D)

▪ 1 block run on a single SM

© Altimesh 2018 – all rights reserved

3. Run on GPU
Hybridizer™: A Few Words

• Hybridizer™ is a compiler targeting CUDA-enabled GPUS from DotNet.

• Attribute-based (no runtime cost)

• Integrated with debugger and profiler

• Support of Generics and Virtual functions

• …

13

• Trial version downloadable from Visual Studio Marketplace

• Professional edition available in beta (Altimesh website)

• Full version already deployed in Investment Banks (upon request)

https://marketplace.visualstudio.com/items?itemName=altimesh.AltimeshHybridizerExtensionEssentials#overview
http://www.altimesh.com/download_msi

© Altimesh 2018 – all rights reserved

3.1 Run On GPU
Decorate Methods

14

[EntryPoint]
public static void ParallelCsharp(byte[] output, byte[] input, int width, int height)
{

Parallel.For(window, height - window, j =>
{

var buffer1 = new byte[windowCount * windowCount];
for (int i = window; i < width - window; ++i)
{

for (int k = -window; k <= window; ++k)
{

for (int p = -window; p <= window; ++p)
{

int bufferIndex = (k + window) * windowCount + p + window;
int pixelIndex = (j + k) * width + (i + p);
buffer1[bufferIndex] = input[pixelIndex];

}
}

Array.Sort(buffer1, windowCount * windowCount);
output[j * width + i] = buffer1[(windowCount * windowCount) / 2];

}
});

}

One and only
modification

© Altimesh 2018 – all rights reserved

15

Quite disappointing isn’t it? WHY??

0

1

2

3

4

5

6

7

8

Aforge Naive Parallel Hybridizer
(heap)

Relative Performance

© Altimesh 2018 – all rights reserved

3.2 Allocate Memory
Heap Allocation On GPU

16

[EntryPoint]
public static void ParallelCsharp(ushort[] output, ushort[] input, int width, int height)
{

Parallel.For(window, height - window, j =>
{

var buffer1 = new ushort[windowCount * windowCount];
for (int i = window; i < width - window; ++i)
{

for (int k = -window; k <= window; ++k)
{

for (int p = -window; p <= window; ++p)
{

int bufferIndex = (k + window) * windowCount + p + window;
int pixelIndex = (j + k) * width + (i + p);
buffer1[bufferIndex] = input[pixelIndex];

}
}

Array.Sort(buffer1, windowCount * windowCount);
output[j * width + i] = buffer1[(windowCount * windowCount) / 2];

}
});

}

Thread-local
malloc is
really slow
on GPU

© Altimesh 2018 – all rights reserved

3.2 Allocate Memory
Move To Stack

17

[EntryPoint]
public static void ParallelCsharp(ushort[] output, ushort[] input, int width, int height)
{

Parallel.For(window, height - window, j =>
{

var buffer1 = new StackArray<ushort>(windowCount * windowCount);
for (int i = window; i < width - window; ++i)
{

…
}

});
}

Mapped to:
unsigned short buffer1[size];

Allocated on stack :
benefits from cache / registries if it fits

© Altimesh 2018 – all rights reserved

18

0

5

10

15

20

25

30

Aforge Naive Parallel Hybridizer
(heap)

Hybridizer
(stack)

Relative Performance

© Altimesh 2018 – all rights reserved

CPU

• Cores

– Consumer : 8

– Server : 22

• SIMD Lanes

– AVX2 : 4 - 8

– AVX512 : 8 – 16

• Hyperthreading

– x2

• Parallelism

GPU

• SMs

– GeForce : 28

– Tesla : 80

• Cores per SM

– GeForce : 128

– Tesla : 64

• Context (to hide latency)

– 32

• Parallelism

19

32 up to 704 3,584 up to 164,000

3.3 Feed the Beast

© Altimesh 2018 – all rights reserved

20

Block 0

Thread 0

Thread 1

Thread 2

Thread 3

Ok with just a few threads (CPU)
On a GPU we typically have 10K
threads (57344 in my case).
Far above image size (1960).
=> Most threads stall.

3.3 Feed the Beast
Not Enough Lines – Too Many Threads

© Altimesh 2018 – all rights reserved

3.3 Feed the Beast
Use A 2D Grid

21

[EntryPoint]
public static void Parallel2DStack(ushort[] output, ushort[] input, int width, int height)
{

Parallel2D.For(window, width - window, window, height - window, (i, j) =>
{

…
});

}

Block 0

Block 1

Don’t slice the
image, dice it !

We have 4M pixels :
enough to feed the
GPU

© Altimesh 2018 – all rights reserved

22

Run time (seconds):
- AForge : 4,16
- Parallel C# : 0,76
- Hybridizer Stack 2D : 0,053

Can we do better?

0

10

20

30

40

50

60

70

80

90

Aforge Naive Parallel Hybridizer
(heap)

Hybridizer
(stack)

Hybridizer
Stack 2D

Relative Performance

© Altimesh 2018 – all rights reserved

23

Seems we are reading too much data!

0

10

20

30

40

50

60

70

80

90

Aforge Naive Parallel Hybridizer
(heap)

Hybridizer
(stack)

Hybridizer
Stack 2D

Relative Performance

Run time (seconds):
- AForge : 4,16
- Parallel C# : 0,76
- Hybridizer Stack 2D : 0,053

Can we do better?

© Altimesh 2018 – all rights reserved

4.1 Implement Advanced Optimizations
Leverage On-Chip Cache (Shared memory)

24

Common read zone

(i,j) (i+1,j)

© Altimesh 2018 – all rights reserved

4.1 Implement Advanced Optimizations
Leverage On-Chip Cache (Shared memory)

25

Common read zone

(i,j) (i+1,j) Block

Should
be cached

window

© Altimesh 2018 – all rights reserved

4.1 Implement Advanced Optimizations
Leverage On-Chip Cache (Shared memory)

26

- On chip (Multiprocessor)
- Accessible by entire block
- 48KB per block

- See it as CPU L1-cache with
explicit control

Block (0,0)

Shared Memory

Registers Registers Registers

Thread 0 Thread 1 Thread 2

© Altimesh 2018 – all rights reserved

4.1 Implement Advanced Optimizations
Leverage On-Chip Cache (Shared memory)

27

[EntryPoint]
public static void Parallel2DShared(ushort[] output, ushort[] input, int width, int height)
{

int cacheWidth = blockDim.x + 2 * window;
ushort[] cache = new SharedMemoryAllocator<ushort>().allocate(cacheWidth* cacheWidth);
for (int bid_j = blockIdx.y; bid_j < (height) / blockDim.y; bid_j += gridDim.y)
{

for (int bid_i = blockIdx.x; bid_i < (width) / blockDim.x; bid_i += gridDim.x)
{

int bli = bid_i * blockDim.x;
int blj = bid_j * blockDim.y;
int i = threadIdx.x + bid_i * blockDim.x;
int j = threadIdx.y + bid_j * blockDim.y;

// … some code to fetch cache – put data in shared memory
CUDAIntrinsics.__syncthreads();

var buffer1 = new StackArray<ushort>(windowCount * windowCount);
var buffer2 = new StackArray<ushort>(windowCount * windowCount);
for (q = -window; q <= window; ++q)
{

for (p = -window; p <= window; ++p)
{

int bufferIndex = (q + window) * windowCount + p + window;
int cacheIndex = (threadIdx.y + window + q) * cacheWidth + threadIdx.x + window + p;
buffer1[bufferIndex] = cache[cacheIndex];

}
}

MergeSort(buffer1, buffer2, windowCount * windowCount);
output[j * width + i] = buffer1[(windowCount * windowCount) / 2];

}
}

}

Cache « allocation »

Synchronize threads
in block

Read from cache

© Altimesh 2018 – all rights reserved

28

We have a x87 speed-up over
initial single-threaded
code.
Code still works in .Net

Can we do better?

From 1.7 GB down to 402 MB

0

10

20

30

40

50

60

70

80

90

100

Aforge Naive Parallel Hybridizer
(heap)

Hybridizer
(stack)

Hybridizer
Stack 2D

Hybridizer
(shared)

Relative Performance

© Altimesh 2018 – all rights reserved

Block (0,0)

Shared Memory

Registers Registers Registers

Thread 0 Thread 1 Thread 2

Texture Memory

4.2 Implement Advanced Optimizations
Leverage Texture Cache

29

- Different memory cache
- Optimized for 2D spatial

locality

© Altimesh 2018 – all rights reserved

Block (0,0)

Shared Memory

Registers Registers Registers

Thread 0 Thread 1 Thread 2

Texture Memory

4.2 Implement Advanced Optimizations
Leverage Texture Cache

30

- Different memory cache
- Optimized for 2D spatial

locality

Bind input image to texture

© Altimesh 2018 – all rights reserved

4.2 Implement Advanced Optimizations
Leverage Texture Memory

• CUDA API is fully available through a wrapper (P/Invoke)

• Texture and Surface API types are exposed and mapped (IntrinsicTypes)

• Resulting C# code for textures usage very similar to CUDA/C tutorials

31

© Altimesh 2018 – all rights reserved

32

We accelerated AForge with a x92 speed-up.

Can we do better?

0

10

20

30

40

50

60

70

80

90

100

Aforge Naive Parallel Hybridizer
(heap)

Hybridizer
(stack)

Hybridizer
Stack 2D

Hybridizer
(shared)

Hybridizer
(shared +
textures)

Relative Performance

© Altimesh 2018 – all rights reserved

33

© Altimesh 2018 – all rights reserved

34

5. Implement Advanced Optimizations
What’s next?

Block (0,0)

Shared Memory

Registers Registers Registers

Thread 0 Thread 1 Thread 2

Texture Memory

Put everything in register file

GPU SM have 32k registers for a
Block – up to 255 by threads

© Altimesh 2018 – all rights reserved

5.1 Implement Advanced Optimizations
Rolling Buffer Of Registers

35

(i,j)

(i,j+1)

Load data in registers and process pixel (i,j)

© Altimesh 2018 – all rights reserved

5.1 Implement Advanced Optimizations
Rolling Buffer Of Registers

36

(i,j)

(i,j+1)

Load next line and roll buffer for pixel(i, j+1)

© Altimesh 2018 – all rights reserved

5.2 Implement Advanced Optimizations
Loop Unrolling

// preload window

for (int lj = -window; lj < window; ++lj)

{

j = bj + lj;

if (j < 0) j = 0;

if (j >= height) j = height - 1;

for (int li = -window; li <= window; ++li)

{

i = bi + li;

if (i < 0) i = 0;

if (i >= width) i = width - 1;

filter.set_Item(index, input[j * width + i]);

}

}

37

If window is a compile-time
constant,
backend-compiler is able to
completely unroll loop

(actually required for compiler
to map arrays on registers)

© Altimesh 2018 – all rights reserved

5.3 Implement Advanced Optimizations
Smart Sorting

• Sorting networks are optimal for known-size arrays.

• They are not capable of sorting arbitrary long arrays.

• Possible to implement in C++ meta-programming.

• Enabled with hand-written CUDA, called from C# using « IntrinsicType »

38

[IntrinsicInclude("intrinsics.cuh")]
[IntrinsicType("medianfilter<unsigned short, 3>")]
struct medianfilter_ushort_3
{

public ushort apply() { … }
public void rollbuffer() { … }
public ushort get_Item(int i) { … }
public void set_Item(int i, ushort val) { … }

}

template <typename scalar, int window>
struct medianfilter
{
static constexpr int size = (window * 2 + 1) * (window * 2 + 1);
scalar buffer[size];
scalar work[size];

__forceinline__ __device__ __host__ void set_Item(int i, scalar val) {
buffer[i] = val; }

__forceinline__ __device__ __host__ scalar apply()
{
#pragma unroll
for (int k = 0; k < size; ++k) {
work[k] = buffer[k];

}

hybridizer::StaticSort<size> sort;
sort(work);

return work[size / 2];
}

© Altimesh 2018 – all rights reserved

39

Can we do better?

0

200

400

600

800

1000

1200

1400

1600

Aforge Naive Parallel Hybridizer
(heap)

Hybridizer
(stack)

Hybridizer
Stack 2D

Hybridizer
(shared)

Hybridizer
(shared +
textures)

Hybridizer
registers

Relative Performance

© Altimesh 2018 – all rights reserved

6. Write Plain CUDA

• Writing the entire application in CUDA/C leads to

40

12%

Can we do better?

0

200

400

600

800

1000

1200

1400

1600

1800

Aforge Naive Parallel Hybridizer
(heap)

Hybridizer
(stack)

Hybridizer
Stack 2D

Hybridizer
(shared)

Hybridizer
(shared +
textures)

Hybridizer
registers

CUDA

Relative Performance

© Altimesh 2018 – all rights reserved

Maybe…

41

We barely read the image once
- 7.68 MB read
- 7.68 MB write
- 0.49 MB overhead

Room for improvement is 5%

© Altimesh 2018 – all rights reserved

Maybe…

42

Next in line : pipe busy…

© Altimesh 2018 – all rights reserved

Xeon X6550
Xeon X5690

Xeon E5-2690

Xeon E5-2697v2

Xeon E5-2699v3
Xeon E5-2699Av4

Xeon Gold 6154

Tesla M2090

Xeon Phi-7120X Tesla K40

Tesla K80

Xeon Phi-7290

Tesla P100

Tesla V100

Xeon X6550
Xeon X5690

Xeon E5-2690
Xeon E5-2697v2

Xeon E5-2699v3

Xeon E5-2699Av4

Xeon Gold 6154Tesla M2090

Xeon Phi-7120X

Tesla K40

Tesla K80
Xeon Phi-7290

Tesla P100
Tesla V100

20

200

25

50

100

200

400

800

1600

3200

6400

déc-08 déc-09 déc-10 déc-11 déc-12 déc-13 déc-14 déc-15 déc-16 déc-17 déc-18

G
B

/S

G
FL

O
P

S FLOPS vs BANDWIDTH PERFORMANCE EVOLUTION

Peak Flops Peak Flops BW

BW Expon. (Peak Flops) Expon. (Peak Flops)

Expon. (BW) Expon. (BW)

FLOPS double every

CPU: 1.8y

ACC: 1.9y

BANDWIDTH doubles every

CPU: 4.3y

ACC: 2.8y

Caching computations is not
necessary anymore

Caching memory operations is
mandatory!

Always use the fastest memory
available, the fastest of them all
being registries

43

Accelerators

CPU

7. Take Away

Memory interaction is the elephant in the room

© Altimesh 2018 – all rights reserved

Thank you

44

All performance measurements have been done on:
- Core I7 4770S@3.1 GHZ
- GeForce 1080 TI – 3584 cores @ 1.4GHz
Windows 10 x64

http://www.altimesh.com

0

200

400

600

800

1000

1200

1400

1600

Aforge Naive Parallel Hybridizer
(heap)

Hybridizer
(stack)

Hybridizer
Stack 2D

Hybridizer
(shared)

Hybridizer
(shared +
textures)

Hybridizer
registers

Relative Performance

http://www.altimesh.com/download_msi

